Integrated Transmitter for 100 Gb/s OOK Connectivity Based on Polymer Photonics and InP-DHBT Electronics

(1) National Technical University of Athens, Zografou 15573, Athens, Greece
(2) III-V Lab, Route de Nozay, Marcoussis, 91460 France
(3) Fraunhofer Institute for Telecommunications, HHI, Berlin 10587, Germany
(4) Linkra Srl, Via S.Martino 7, 20864 Agrate Brianza (MB) Italy
(5) GigOptix Inc.19910 North Creek Parkway Suite 100, Bothell, WA, 98011, USA
Presentation Outline

• Intro – Why serial 100Gb/s connectivity

• Technical solutions and our approach

• Transmitter device and experiment at 80-100 Gb/s

• Next step

• Conclusions
Why serial 100G connectivity?

Despite current achievements on 100 GbE interconnection, efforts on higher bandwidth transceivers are ongoing

- A robust solution for 100 Gb/s NRZ-OOK connectivity has the potential to revolutionize datacom applications
 - Robustness
 - Simplicity
 - Energy efficiency
 - Number of components
 - Footprint
 - Cost

- High-speed modulators and the underlying technology for high-speed electronics may:

Define a new base for operating baud-rates

Parallelism
- High-order formats
- Coherence technology

400G and 1T systems
State of the art on 100G optical modulators

Two technologies with proven 100G potential

✓ InP travelling wave EAM (InP-TWEAM)
 • Amplitude modulation only

✓ Mach-Zehnder modulator based on electro-optic polymers operating at 100 Gb/s

M. Chacinski et al, JLT 27, 16, 2009

S. R. Nuccio et al, OFC 2011, JThA30

Single device demonstrations rather than complete transmitter solutions
High speed electronics so far...

InP-DHBT technology has a proven potential for:

- High speed operation
- High breakdown voltage

2:1 MUX and RF-drivers based on InP-DHBT technology and operating at 100 Gb/s have already been demonstrated

However: they have never been integrated with the optical part of 100G transmitter in order to improve performance and reduce cost
Optical sub-assembly

- Mach-Zehnder modulator on EO polymer platform
 - Single mode waveguides
 - $V_{pi} = 3.5 \text{ V}$
 - High EO coefficient of the core material when poled (65 pm/V)

- Hybrid integration of an InP DFB laser at 1550 nm
 - 2 dB loss at the polymer/InP interface
 - 90° rotation of the TE laser due to the properties of the MZM
Developing an integrated 100G transmitter

Development of a MUX-DRV circuit using 0.7 μm InP-DHBT technology

- Integration of MUX and RF-driving functionalities in a single circuit
- It receives two 50 Gb/s data signals and a 50 GHz input clock
- 2x2V differential output
- Power consumption equal to 2W
Assembly and packaging

- Alumina stiplines (50 Ohm impedance) at the MUX-DRV input
- Short (<150 µm) wire-bonds at the MUX-DRV output
- Lensed fiber at the optical output (1.5 dB coupling loss)
- 8.5 dB total optical loss
- 0.8 dBm output power at the transmission peak of the MZM
Experimental setup

- Generation of $2^{31}-1$ PRBS data signals at **80 to 100 GB/s**
- 1:2 DEMUX using EAM and 1:4 electrical DEMUX to acquire 8x10Gb/s channels
- BER measurements on all 8x10Gb/s channels
Experimental results

Eye-diagram-based evaluation

80 Gb/s

ER = 14.1 dB

90 Gb/s

ER = 13.6 dB

100 Gb/s

ER = 13.5 dB

Timing-jitter (rms) at all data rates <1 ps
• 80 Gb/s stream was 1:2 demultiplexed using EAM
• Further demultiplexing to 10 Gb/s using electrical DEMUX

✓ Lower power penalty at 80G as well as error-free operation at 100G is expected with shorter optical switching windows
Summary

• Presentation of the first integrated transmitter for NRZ-OOK operation directly at 100 Gb/s.

• The transmitter relies on a EO polymer Mach-Zehnder modulator and the hybrid integration of:

 1550 nm DFB laser
 InP-DHBT MUX-DRV electronic circuit.

• Evaluation through eye-diagrams and BER measurements in 80-100 Gb/s reveal high-quality performance.

• Next steps include:

 The use of new MUX-DRV designs
 Complex monolithic and hybrid integration on the EO platform for modules of higher functionality
Thank you for your attention!

The work is supported by EU Commission

7th Framework Programme
Information & Communications Technologies